Development and experimental validation of a finite element model of total ankle replacement.

نویسندگان

  • Alexandre Terrier
  • Xabier Larrea
  • Jonas Guerdat
  • Xavier Crevoisier
چکیده

Total ankle replacement remains a less satisfactory solution compared to other joint replacements. The goal of this study was to develop and validate a finite element model of total ankle replacement, for future testing of hypotheses related to clinical issues. To validate the finite element model, an experimental setup was specifically developed and applied on 8 cadaveric tibias. A non-cemented press fit tibial component of a mobile bearing prosthesis was inserted into the tibias. Two extreme anterior and posterior positions of the mobile bearing insert were considered, as well as a centered one. An axial force of 2kN was applied for each insert position. Strains were measured on the bone surface using digital image correlation. Tibias were CT scanned before implantation, after implantation, and after mechanical tests and removal of the prosthesis. The finite element model replicated the experimental setup. The first CT was used to build the geometry and evaluate the mechanical properties of the tibias. The second CT was used to set the implant position. The third CT was used to assess the bone-implant interface conditions. The coefficient of determination (R-squared) between the measured and predicted strains was 0.91. Predicted bone strains were maximal around the implant keel, especially at the anterior and posterior ends. The finite element model presented here is validated for future tests using more physiological loading conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical and Experimental Investigation of I Beam-to-CFT Column Connections under Monotonic Loading (RESEARCH NOTE)

In this study, the behavior characteristics of I beam-to-concrete filled tube (CFT) column connection is studied through experiment and finite element models under the monotonic loading. To validate the finite element modeling, at first, an experimental model is made and experimented. After validation of the finite element modeling, different models were created in the software. The studied par...

متن کامل

Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FE...

متن کامل

Construction and validation of a finite element model of a human pelvis

Introduction The hip joint is one of the most important joints for the mobility of the human body. Degeneration of this joint often results in immobilisation and disabling pain. In the past 30 years total hip arthroplasty has proven to reduce pain and to improve quality of life. In order to guarantee long-term stability of these devices it is important to obtain a long lasting fixation of the p...

متن کامل

Numerical investigation on the pullout shear strength of soil-nail interface using finite element method

Soil nailing is a popular reinforcement method for stabilizing slopes, excavations, and retaining walls in many countries. The pullout capacity of the soil-nail interface is a critical parameter for the design and safety assessment of soil-nailed systems. In this paper, a three-dimensional (3D) finite element (FE) model is developed using the commercial program ABAQUS to simulate the pullout te...

متن کامل

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 47 3  شماره 

صفحات  -

تاریخ انتشار 2014